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Figure 7. Dispersion diagram for the lowest order modes with different corrugation depths in a 

cylindrical SWS (solid lines represent the first mode while dashed lines represent the second mode  

for each corrugation depth indicated) with mean radius R_0=1.6 cm and period d=0.671 cm.

For the sinusoidal SWS with period cm the hybrid EH11 mode (its structure is shown in Fig. 8) displays negative 

dispersion when the corrugation depth mm (Fig. 7).

Figure 8. Structure of the hybrid EH11 mode in an all-metallic SWS with sinusoidal corrugation. 

Thus, we have shown that the well-known properties of MSWSs are, in fact, common properties of all-metallic 

periodic systems with deep corrugations. 

It is conceivable that additional properties of MSWSs will be identified in the future that will not have similar 

properties in traditional SWSs. 

IV.CONCLUSIONS

Using the metamaterial concept, we designed a novel effective microwave oscillator with a MSWS and have 

achieved record high output power of about 100 MW in experiment, which agrees with PIC simulation results 

for the reduced input parameters. Computer simulations show that with applied voltage 400 kV, radiation 

power is 260 MW with frequency 1.4 GHz. An efficiency of 15% is achieved with very fast rise time 4 ns. 

The designed MSWS consisting of rings with oppositely oriented cuts with small period that is much less than 

wavelength shows metamaterial properties such as below cut-off propagation, and negative dispersion. 

We also show that long before the appearance of the concept of MSWSs, many researchers in vacuum 

electronics worked with SWSs having properties similar to the known (at present) “unique” properties of  

MSWSs without knowing about it.
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Improving PET Quantitation with Denoising,  
Motion Compensation, and Deblurring
Positron emission tomography (PET) enables 3D visualization of vital physiological information, e.g., 

metabolism, blood flow, and neuroreceptor concentration by using targeted radioisotope-labeled tracers. 

Quantitative interpretation of PET images is crucial both in diagnostic and therapeutic contexts. As a result of its 

unique functional capabilities, PET imaging plays a pivotal role in diagnostics and in therapeutic assessment in 

many areas of medicine, including oncology, neurology, and cardiology. Accurate quantitation requires correction 

of PET raw data and/or images for a number of physical effects. These include attenuation correction, randoms 

and scatter correction, subject motion correction, and partial volume correction. We have developed a range 

of techniques that address the PET denoising, motion compensation, deblurring problems. Several of these 

methods greatly enhance the quantitative capabilities of PET particularly by incorporating information from an 

anatomical imaging modality such as magnetic resonance imaging (MRI). 

IMAGE DENOISING

Faced with a fundamental tradeoff between radiation dose and image noise, PET data is inherently noisy. The 

high levels of noise in PET images pose a challenge to accurate quantitation. This issue is particularly well-

pronounced at the early time frames of dynamic PET 

images, which are usually short to capture rapid changes 

in tracer uptake patterns. In order to improve image quality 

and quantitative accuracy, statistical image reconstruction 

algorithms model the Poisson characteristics of PET data 

and employ numerical optimization algorithms to solve 

the corresponding optimization problem [1, 2]. Common 

reconstruction procedures, such as ordered subsets expectation maximization, are therefore routinely followed 

by a post-filtering step for denoising the reconstructed image. A range of strategies have been proposed for 

post-reconstruction denoising of both static and dynamic PET images [3, 4]. In recent years, image denoising 

based on non-local means (NLM) has become popular [5]. Unlike conventional neighborhood filters, which 

use local similarities, in this technique, the search for voxels similar to a given voxel is no longer restricted to its 

immediate vicinity. This is an attractive feature for dynamic PET images since tissue types exhibiting similar tracer 
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dynamics are often distributed all over the body. We have developed denoising techniques for dynamic PET 

images which are inspired by NLM denoising. 

NLM denoising computes weighted averages of voxel intensities assigning larger weights to voxels that are 

similar to a given voxel in terms of their local neighborhoods or patches. In our work [6], we introduced three 

key modifications to tailor the original NLM framework to dynamic PET. Firstly, we derived similarities from less 

noisy later time points to denoise the entire time series. Secondly, we used spatiotemporal patches for robust 

similarity computation. Finally, we used a spatially varying smoothing parameter based on a local variance 

approximation over each spatiotemporal patch. To assess the performance of our denoising technique, we 

performed realistic simulations on a dynamic digital phantom based on the Digimouse atlas. For experimental 

validation, we denoised [18F]FDG PET images from a mouse study and a hepatocellular carcinoma patient 

study. We compared the performance of NLM denoising with four other denoising approaches – Gaussian 

filtering, PCA, HYPR, and conventional NLM based on spatial patches. The simulation study revealed noticeable 

improvement in bias-variance performance achieved  

using our NLM technique relative to all the other methods. The experimental data analysis revealed that our 

technique leads to clear improvement in contrast-to-noise ratio in Patlak parametric images generated from 

denoised preclinical and clinical dynamic images, indicating its ability to preserve image contrast and high-

intensity details while lowering the background noise variance. In a follow-up study, we extended the denoising 

framework by using non-local Euclidean means [7]. To further improve denoising performance along sharp 

edges, we used anatomical guidance to limit the spatial window for non-local similarity computation. We tested 

this anatomically guided denoising technique by performing simulations on the BrainWeb digital phantom and 

on human datasets (Fig. I A-C) and demonstrated its robustness particularly at high noise levels and its ability to 

preserve sharp edges (e.g. tissue and organ boundaries).

MOTION COMPENSATED IMAGE RECONSTRUCTION

Pulmonary PET imaging is confounded by blurring artifacts caused by respiratory motion, which degrade both 

image quality and quantitative accuracy. Simultaneous whole body PET/MRI is an emerging technology that 

combines the strengths of two complementary imaging modalities and is becoming an increasingly potent tool 

for integrated imaging. While PET reveals only functional or physiological information, MRI is able to generate 

structural or anatomical information, generally with higher resolution. In the context of lung imaging, where PET 

scans are severely compromised by respiratory motion, we have developed a maximum a posteriori estimation 

framework that incorporates deformation fields derived from simultaneously acquired MRI data. 

We developed and implemented a complete data acquisition and processing framework for respiratory motion 

compensated image reconstruction using simultaneous PET/MRI and validated it through simulation and clinical 

patient studies [8, 9]. For fast acquisition of high-quality 4D MR images, we developed a novel Golden-angle 

RAdial Navigated Gradient Echo (GRANGE) pulse sequence and used it in conjunction with sparsity-enforcing 

k-t FOCUSS reconstruction. We used a 1D slice-projection navigator signal encapsulated within this pulse 

sequence along with a histogram-based gate assignment technique to retrospectively sort the MR and PET data 

into individual gates. We computed deformation fields for each gate via nonrigid registration. The deformation 

fields are incorporated into the PET data model as well as utilized for generating dynamic attenuation maps. The 

framework was validated using simulation studies on the 4D XCAT phantom and three clinical patient studies 

that were performed on the Biograph mMR, a simultaneous PET/MR scanner. We compared motion corrected 

results with ungated and single-gate reconstruction results and demonstrated that this method led to robust 

increases in contrast-to-noise ratio of high-intensity features of interest affected by respiratory motion (Fig. II 

A-C). This technique enables the generation of PET images free of motion artifacts, which leads to improved 

image quantitation, thereby facilitating lung cancer staging and treatment optimization.

PARTIAL VOLUME CORRECTION

The quantitative accuracy of PET is degraded by partial volume effects caused by the limited spatial resolution 

capabilities of PET scanners. We developed an image deblurring technique that uses the spatially varying point 

spread function of the scanner measured in the image space. To stabilize the deconvolution problem, we 

introduce the joint entropy between the PET image and a high-resolution MR image as an information theoretic 

penalty function [10]. We implemented a computationally efficient framework for solving the corresponding 

numerical optimization problem. By means of simulations on the BrainWeb phantom, we showed that our 

method leads to faster convergence and a lower mean squared error. The technique was applied to Hoffman 

brain phantom data as well as human data. Compared to standalone deblurring, which tends to amplify noise, 

the joint entropy prior leads to a smooth PET image with sharp boundaries consistent with MRI. One challenge 

with our approach, however, is the spurious interpretation of intermediate intensity values that are generated by 

the blurring effects as separate peaks in the joint probability density function. We further extended this method 

to include a spatial encoding scheme that leads to a weighted joint entropy regularizer which suppresses the 

effect of the spurious peaks [11]. Our studies on the BrainWeb digital phantom and the Hoffman experimental 

phantom show that the resultant technique reduces mean squared error in the deblurred PET image and leads 

to a more realistic gray-to-white contrast ratio. We also showed that the spatially encoded joint entropy prior is 

more robust than ordinary joint entropy in the presence of structural discrepancies between the PET and the 

anatomical images and suppresses artifacts arising from such discrepancies. The method was applied to range 

of human studies (Fig. III A-C).

PET Imaging of tau tangles in the brain is very promising for monitoring the progression of Alzheimer’s disease 

and chronic traumatic encephalopathies. However, partial volume effects associated with the limited PET spatial 

resolution pose a challenge to quantitation. Application of our anatomically guided deblurring method to a pool 

of clinical subjects revealed a marked improvement in the correlation of PET measures with well-recognized 

clinical metrics of cognitive performance [12]. 
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I. Anatomically guided nonlocal means denoising: A. Segmented MR B. Noisy frame from dynamic  

[18]F AV1451 image of neurofibrillary tangles in a human subject with mild cognitive impairment. 

C Denoised PET image. II. Motion compensation using simultaneous PET/MR: A. MR image with 

superimposed displacement fields. B. Uncorrected PET image showing a lung lesion with motion 

induced blurring. C. Motion corrected PET image. III. Anatomically guided image deblurring: A. TI 

weighted MR image of a human subject. B. [18]F FDG PET image. C. Deblurred PET image based  

on anatomical prior information.

NOT MIND OVER MATTER

Be who you are and say what you feel because those who mind don’t matter and those who matter  

don’t mind.

Theodor Seuss Geisel

IS EVERYBODY…

Happy people don’t need to have fun.

Jean Stafford


