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(Received 2 March 2012; final version received 30 July 2012)

This paper presents a study of finite pulse widths for the BABA pulse sequence using the Floquet-Magnus
expansion (FME) approach. In the FME scheme, the first order F) is identical to its counterparts in average
Hamiltonian theory (AHT) and Floquet theory (FT). However, the timing part in the FME approach is
introduced via the A;(¢) function not present in other schemes. This function provides an easy way for evaluating
the spin evolution during the time in between’ through the Magnus expansion of the operator connected to the
timing part of the evolution. The evaluation of A(¢) is particularly useful for the analysis of the non-stroboscopic
evolution. Here, the importance of the boundary conditions, which provide a natural choice of A(0), is ignored.
This work uses the A;(¢) function to compare the efficiency of the BABA pulse sequence with § — pulses and the
BABA pulse sequence with finite pulses. Calculations of A;(z) and F are presented.

Keywords: BABA pulse sequence; finite pulse widths; dipolar coupling; Floquet—-Magnus expansion

1. Introduction

Average Hamiltonian theory (AHT) [1,2] and Floquet
theory (FT) [3] are the commonly used methods to
treat theoretical problems in solid-state nuclear mag-
netic resonance (NMR), respectively in static and
rotating samples. In recent years, there has been a
sustained effort using the AHT to improve the line-
narrowing efficiency of a multiple-pulse cycle by
constructing supercycles to compensate for any pulse
errors and by designing symmetries into the toggling
frame Hamiltonian [4]. For example, the celebrated
WAHUHA cycle as well as many other multiple-pulse
sequences were significantly improved when finite
pulse widths were properly accounted for [5]. About
three decades ago, Vega [6,8,9] and Maricq [7] intro-
duced to NMR the FT, which provides a more
universal approach for the description of the full time
system. The FT also allows the computation of the full
spinning sideband pattern that is of importance in
many magic angle spinning (MAS) experimental
circumstances to obtain information on anisotropic
sample properties.

Recently, the Floquet Magus Expansion (FME)
approach was introduced to solid-state NMR spec-
troscopy [10-13]. The method of FME is a viable

scheme for controlling the complex spin dynamics for
an ensemble of dipolar coupled spins. The approach
was compared to other series expansions such as AHT
and FT, and a generalized FME scheme was presented
based on the importance of the boundary conditions,
which provide a natural choice of A,(0) to simplify the
calculation of higher-order terms and allows FT to be
managed in the Hilbert space. In recent work on the
efficient theory of dipolar recoupling in the solid-state
NMR of rotating solids [14], we applied the FME
approach on BABA [15] and C7 radiofrequency pulse
sequences [16]. The application of the method on
BABA sequence cases ignored the spin system’s evo-
lution during the RF pulse sequences and approxi-
mated the RF pulses as ideal §-function perturbations.

Pulses in NMR spectrometers have a finite length,
but the usual hard pulse assumption ignores the finite
pulse width and treats the pulse as a rotation of the
frame of reference about the direction of the radio-
frequency (RF) magnetic field [17]. This assumption
implies that the interaction with the RF magnetic field
dominates all other terms in the Hamiltonian. For
liquids, this approximation works well, but for dipolar
nuclei (spin-1/2), the RF magnetic field is commonly
compared to the offset of the signal from the resonance.
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Modern high-field spectrometers permit offsets of the
dipolar interactions. The situation with quadrupolar
nuclei is much worse, with resonances hundreds of kHz
off-resonance. Therefore, accounting for the finite
pulse width is important due to the evolution of the
spin system under the dipolar or quadrupolar interac-
tion [4,18-22]. Hence, a good understanding of the spin
system behavior during the finite pulses and the theory
thereof is important.

Previous work associated with effects due to finite
pulse widths have been reported by Bloom et al. [23],
Henrichs et al. [24], Mananga et al. [18], and Gregory
et al. [25]. The first three works showed that one can
remove distorsions due to finite pulse widths, for
example in deuterium (spin-1) nuclear magnetic reso-
nance spectroscopy, by scaling the experimental data
by a multiplicative factor determined a priori, and by
cycling the phases of both the receiver and the
transmitter. Gregory et al. reported substantial distor-
sions in the phase of the signal for a spin-1/2, at
frequency offsets comparable to the size of the RF
field. On the other hand, Sergeev [26] reported the
effects of the finite pulse width on free induction decay
using Liouville superoperators. The effects of the finite
pulse width on the shape of the FID were also
discussed by Barnaal er al. [27,28], and Henrichs
et al. [24].

Jaroniec did work for REDOR [40,42] that
involved the use of the average Hamiltonian theory
in a straightforward manner to obtain the magnitude
of the double quantum Hamiltonian as a function of
the pulse length relative to the rotor period. The initial
density operator and the spin evolution under an
average Hamiltonian result in an observable signal.
This development does not consider the behavior of
the spin system during the finite pulse width, which
cannot be described by the AHT. In the theory of
AHT, the spin system is considered to be evolving
under an average Hamiltonian. Unfortunately, the spin
system evolves in a more complex way, as shown in this
article. Therefore, the FME approach, which offers the
possibility of studying the spin dynamics at all times
including multiple period times (1 =nT) as described by
the AHT, can also be used as a viable approach in
control theory of spin systems. Only in a particular
case [10] does the Floquet Magnus Expansion give the
AHT result as provided by the Magnus expansion.
This new approach of FME provides new opportuni-
ties for controlling the evolution of spin systems in
between the stroboscopic detection points. More
recently, Saalwachter [41] advocated the use of nor-
malized double quantum (DQ) build-up curves for a
quantitative assessment of weak average dipole—dipole
couplings and even their distributions.

In this work, we use the FME approach to
investigate the effects of finite pulse width on the
BABA pulse sequence. The interaction Hamiltonian
used in this study is the dipolar Hamiltonian. In
practice, the performance of rotor-synchronized pulse
sequences is sensitive to the chemical-shielding inter-
action and to the resonance offset, making use of
nuclei such as "*C, '°N, and *'P impractical in high
magnetic fields, where the isotropic and anisotropic
part of the chemical shielding commonly dominates
over the dipolar interaction and often exceeds the
spinning frequency. In the present article, we ignore the
effects of the off-resonance, chemical shift anisotropy
and J couplings. We only consider and use the dipole—
dipole coupling to generate double quantum coher-
ence. To the best of our knowledge, this is the first
report highlighting the application of the FME scheme
to investigate the effect of finite pulse widths on
recoupling pulse sequences such as BABA. We have
limited our effort to the first-order term. In our recent
work [14], we showed that A,(f) <« A(¢). This work
shows how complex equations describing the complex-
ity of the spin dynamics can be reduced to simple
equations.

The outline of the paper is as follows. In Section 2,
we describe the Floquet—-Magnus expansion with a
brief illustration of the Magnus expansion (ME) and
the celebrated Floquet theorem, which ensures the
factorization of the solution in a periodic part and a
purely exponential factor. We elucidate explicitly the
first contributions to the Floquet-Magnus expansion.
Section 4 discusses the results obtained. We briefly
discuss the results and we compare them with those
found in previous work and by other authors [14,15] in
an analogue treatment. Section 5 of the paper sum-
marizes our conclusions.

2. Theory

In the following, we analyse the spin dynamics of a
system of dipolar coupled spins evolving under the
effect of finite pulse widths of the BABA pulse
sequence shown in Figure 1. Ignoring any J-coupling,
quadrupolar coupling and chemical shift, the nuclear
spin Hamiltonian is given by the familiar dipolar
interaction, which is written as

(0 =3 3 o0 TH, n

i#]

where the second-rank irreducible tensor operators is

ij 1 ij ij ij
Th= |2~ T = 1] @)



Downloaded by [Harvard College] at 07:41 08 November 2012

Molecular Physics 3

X X Y ¥

0 T/ T

Figure 1. BABA pulse sequence with §-pulse width.

In Equation (1), we have

2
o (1) = by Y Cla, B/, y")e "

n=-2
2 P
= by Y Cla, phyement+7"), ©)
n=-2

where o, f and y are Euler angles describing the
orientation of a given molecule or crystallite in the
MAS rotor. b; is the coupling constant [14,28].
The coefficients C” can be expressed as

CZ(O[U’ BY) = d(z),n(eM) Z (=1)" an,eﬂna’ dﬁ_n/(ﬂl.l)’
n'=-2
“4)

where YJ are second-rank spherical harmonic func-
tions. >, (BY) are second-rank reduced Wigner rotation
matrix elements and 6, is the magic angle, with
d3y(6r) = 0 and C) = 0 [29].

We consider the evolution of the spin system under
the BABA pulse sequence with finite pulse width errors
shown in Figure 1, developed by Demco et al. [15].
This sequence resembles the pulse sequence proposed
by Meier and Earl [30,31], which is not completely
synchronized for producing a pure double-quantum
Hamiltonian. The BABA cycle with ideal §-pulses is
already well known in the NMR community to give
more efficient recoupling compared with many recou-
pling sequences such as DRAMA, HORROR or C7
pulse sequences [16]. The BABA strength for generat-
ing a pure double-quantum Hamiltonian is twice that
of the DRAMA and C7 pulse sequences, and has been
used for broadband high-resolution multiple-quantum
NMR spectroscopy in rotating dipolar solids. The
sequence with finite pulse width errors consists of a 90°
pulse about the x axis, a period of free evolution of
time((tg/2) — 2tp), a 90° pulse about the —x axis,
followed by a 90° pulse about the y axis, next a period
of free evolution of time ((tg/2) — 27p), ending with the

application of a 90° pulse about the —y axis. All pulse
widths are of duration 7p. The BABA pulse sequence is
used during the excitation period to generate a pure
double-quantum Hamiltonian. It has been proven that
a further improvement of the signal-to-noise ratio is
achieved by sign inversion of all pulse phases after two
rotor periods for the compensation of radiofrequency
pulse imperfections [15]. Different variants of the
BABA sequence are possible for the excitation of
double-quantum coherences [30,31,33-35], and can
also be subject to a similar treatment as used in this
article.

Consider the following representation for free
evolution time in Figure 1. The toggling frame dipolar
Hamiltonian, Hp, during each stage of the pulse cycle
can be computed. During the first pulse about x, the
toggling Hamiltonian can be written as

- 1 iy
Hy(0) =5 oh(0T5 (). ()
i#]
We have
Tzl](;((l,) — e_inF[XZTél{]einF[XI

— e*lwmrle [21’] —Ju Iy :IeleFIXT' 6
Jolozz T YY (6)
Using the following sandwich formula [32]:

e 1 Be® — Bcosf + Csinb (7

(A, B, and C are three operators that cyclically
commute), the dipolar operator during the first inter-
val, 0 <t < tp, can be calculated as follows:

1
NG
1

_ —ioady yij  joedy _ —iady i ialy
e e e e

G

Ty () = e ™ — 21}, — I}y — I}y]e™

—iot[,y]l;yeialx]’ (8)
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which gives

(o = %{(3 cos’ o = DI, + (sin’ e — DIyy
— I}y — 3cosasina(lyy + I}, ©
with
o = WRFl. (10)
For o =n/2,

¥ P 1 . " , "
Ty (O‘ = E) = 76[21%' — 1, - I)I{X] =Hyy. (1D

During the second time interval, 7p < ¢t < (tg/2) — tp,
we have

Ho(1) = %Z ) (OHY (12)
i#j
with @« = x, y, and z.
Considering Figure 2, the time-dependent function
6(t) can be expressed in the form of the Fourier
expansion

+00
(1) = > axexp(—ikeg), (13)

k=—00

with a; representing the time-independent Fourier
coefficients corresponding to the Fourier index k.

LT ) Trpe-2%

The coefficient a; can be obtained

1 [ .
ap = — o(t)e™ " .
TR Jo

(14)

The coefficients in the first half of the sequence are

1 TR/2—Tp "
al =— "Rt dg,
TR Tp

which are given explicitly by

1
aé\/ = E_ ¢)
1 . .
X _ krop[ ikm(1—2¢)
a; —ﬁe’ [e g — l]
with
_ 2‘L'P
= - .

In the second half of the sequence, we have
v 1 TR—Tp

af =— el/ca)Rt dl,
TR TTR-FTP

which can also be written explicitly as

1 . )
Y _ ikn(14¢) [ ikm(1-2¢)
a, =——e e — 1.

k7 2mik [ ]

Y

o
<

] T | -2 | T

0 Tp Tr/rTe T2z Tr/ZTp Tr/rTe T
+1
0,(t) = O(t)
0o 0
+1
0,(t) = 1- ©,(t) - BABAFinitePulse
-0

0

(15)

(16)

(17)

(18)

(19)

(20)

21

Figure 2. BABA pulse sequence with finite pulse width. The relation 6x(f) = 1 — 0y(¢) is only valid during the interval where

6(t) acts.
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Interval Time I:ID(I)
81 0<t<rtp ij ij
22 h0—= [(3 cos’a — DI, + (sin*a — Dify ]
i#]
22 (z)—[ +3$in(xcosa(1§y+lzz}
i#]
T
8 mEl=yTw i, -1, -1l
l/ —lzz = Ixx
) ‘ Tp <t =< i f
. T <1< @® . y
2 2 Uf[(3 sina — 1)12, + (3cos” o — 1)1%1]
A,,-%[I}X—i— SSinacosa(lgy—f—Il;Z ]
S R <r< 'R 4+
) Ry <Ry, . _ y
2 2 ,/f[(3 cos’a — 1)1, + (3sin® o — 1)’%}(]
A; [ YY—|—3smacosa(1A],7+13x)]
s Ry tp<t<tp—t v
5 ~ Pp=t=1tR—1lp i i /
2 22 j(’)(l _9)7—(21)?)( I)?y)
86 TR—Tp <t =1R

w1 — (BeosPa — DIV, + Bsina — 1)1
2; \/—I: XX ZZ]

+3 Z (z) — )=ty +3sinacosa(t, + 1]
i#]

k=400

o = wgrt, Aj = Zw (1) Z age”*OriFYD and o(f) = Z axexp(—ikwg?).

l#/ k=—

Globally, we can summarize the following:
1
aX:aZ:E—(ﬁ:ao’ (22)

a,{ = e”‘”a,f = qay. (23)

For the §-pulse corresponding to ¢ = 0, we retrieve the
identical results found in Ref. [14]. Table 1 gives the
toggling frame Hamiltonians during each stage of
the system evolution that was developed knowing the
transformations of Iy, Iy and I,.

The FME is an illuminating approach that can be
used to provide a more intuitive understanding of
processes in spin dynamics. This approach is essentially
distinguished from AHT by its function A,(#), which
provides an easy and alternative way for evaluating the
spin behavior in between the stroboscopic observation
points. Following the procedure described in Ref. [10],
the general formula of the approach is given by

Ay(t) = /01 G,(v)dt — tF, + A, (0), (24)

k=—o00

T
Fy=a / G,(v)dr, (25)
T

where G,(t) functions are constructed using the FME
recursive generation scheme [10-13]. The first-order
explicit formula gives

AD = A1(0) + /0 Giodr—iF. (6)
with
Gi(7) = H(v), (27)
A(T) = A1(0), (28)
and
1 T
—?/(; H(t)dr. (29)

In the above expressions, F, represents the time-
independent Hamiltonian that governs the evolution
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of the propagator U(r) expressed as
Ut) = e~ 2y M=t 327 (30)

Via the A,(¢) function, the FME approach is used to
provide insight into how the finite pulse widths affect
the dipolar spin system evolution. We have limited our
efforts to the first-order contribution. The FME
method will show how the BABA pulse sequence,
with the finite pulse widths taken into consideration, is
less robust in generating a pure double-quantum
Hamiltonian compared with the BABA sequence
when removing the contribution of finite pulse
widths, i.e. considering the §-function RF pulses.

The resulting first-order term of the dipolar
Hamiltonian in the FME is calculated as follows:

|
=?/0 Hp(r)dt

Tp - 'L’R/Zfl’p -
= 1 |:/ Hp(t)dr + f Hp(t)dt
T 0 TP

TR/2 5 1 TR/2+TP
—i—/ HD(T)d‘L':| + ?[/ Hp(r)dr

R/2—Tp r/2
TR—Tp " TR -

n f Hp(rdr + / HD(r)dr:|. 31)
R/2+7p TR—Tp

Note that the sum

1 TR/2—Tp N 1 TR—Tp
—/ Hp(r)dt + —/ Hp(r)dt (32)
T Tp T TR/2+1p
corresponds to the average Hamiltonian of BABA with
the §-function RF pulses [14].

The resulting toggling frame Hamiltonians were
integrated over their respective time intervals and are
provided as follows:

/ 7 p(t)dt
O
z;éj n=-2

{ 3Qwgrr sin(2tpwrr)) }
—3(wgrin cosRtpwgp)) ) 1 — e Trexin

2e(T}>a)Riﬂ) (4(1)%1: — winz) 2U)Rln

I77

3wgin
b Cle i | R
127&/: Unz;z 24wy — wpn?) “

{ —3(2(1)13[: sin(2rpa)RF) }
—wgin cos(2tprF)) It

+ -
2e(trorin)(4wk . — whn?)

Z by Z Clle=™"

z;é/ n=-2

| — e~ (trerin) 3wgrin It
X
Qwgin 2(4a)%zF — a)%rﬂ) Yy

—(tpwpin) __ ]
e ij
] o 3 e

WRIN z;éj —1

{ _3(2wRF COS(2‘L’P(URF) }
+ wgrin sin(2tpwgr))
2e(mrorin) (4 . — whn?)

—3(1)R1:

(dokr — win?)

X (Izy —I— Iyz), (33)
[ =Y p, Z anCl(% — 22
124 2\/_ i#] n=-—2
X (21% - IJI?X - 1%2)» (34)

ﬁ Hp(t)dt

2
va Z a- "C”{[ " dox :

z;éj n=-—2
+ Sin<2a)RF(‘Ep — %))) I%Z}
Zb,/ Z a_,C¥ [%"— 4£RF (Sin(wRFTR)

z;éj n=-2
+Sln<2a)RF(‘L'p — %))) Il)]’Y — ‘CPI;X}
Zb,, Z a_,C’

(Sin(wRFTR)
RF

17&/ n=-2
X { |:4L§RF (cos(wrrTr)— cos(Za)RF<tp — %R)))
x Ly + 1]} (35)
Tt
i Hp(r)dt
Zblj Z a—nclj”: 4 ) (Sin(wRFfR)
z;éj n=-2

: << D))
Zbu Z a_yCy X ”_ T3 CSRF<Sin(wRFTR)

l;é] n=—
— sin(Za)RF(rp + 7)))]1)0()( — TPII)'];y}
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l;ﬁj n=-2

- COS<2a)RF<rp + 7)))](1;42 + 1';,()} (36)

(COS(CURFTR)
RF

Hp(0)dt

TR—Tp

Zb,, Z Cle [y + LI, — L1,

lyéj n=-2
Zb,, Z a_ C"

3Ll + )| =5
1#/ n=-2

X z—i- & (sin(2wgrrTR)
2 4LL)R1:

+sinCwrr(tp — )}, }

Zb” Z a_ ,,C’f

z;é] n=-2

3 .
x| + (sin(2wgrtg)
2 4a)RF

+sinQaorr(tp — DI, — Tpl] Y}

Zb,j Z a_,,c'f” (COS(2a)RF'L’R)

z;éj n=-2

— cosQori(tr — T, + 1,0}, (37)

where the integrals I}, I, I3, and I are given by

TR .
I, = / e_”““R’(S COS2(0)RFZ) — l)dl

R—TP
o 3(20)RF sin(ZrRa)Rp)) — 3(a)Rin COS(Z‘L’Ra)RF))
= 2e(TRme)(4w%gF _ winQ)

(1 _ e(‘[le)RiII))

—inwRTR
— (e :
2wgin

3Qwrrsinwrp(tr — Tp)))
—3(wrincos(Qwrr(tr — Tp)))

2emor(TR=TP) (k1. — wHn?)

) (38)

f e "R (3 sin*(wppt) — 1)dt
TR—Tp

{ 3QRwrrsinwrr(tr — Tp))) }
—3(wrincosQwrr(tr — Tp)))
eme(rR rp)(4a)RF an2)
(1 — elTrerin)
2601.217’1
_ 3(2a)RF sin(ZprtR)) — 3(a)Rm COS(2L()RF‘L'R))
2Rtk (4wy . — win?) '

(39)

_ (efl'anTR)

13 _ /IR e*"’"‘)th[ _ —(eimeIR) (1 - e(Tpa)Rln)) ’ (40)
TR—Tp a)Rin

TR .
1y = / @71’1thCOS(Cl)RFZ) sin(wgpt)dt
T

R—TP

. ZCL)RFCOS(2CL)RF(TR — ‘L’p)) + wgin sin(2a)Rp(tR — ‘L’p))

o 2e0RMTR=TP) (4o 1 — whn?)

2wrpESINwWRETR) + @rinsSIN(2wRETR)
2eMORTR (4 . — whn?)

(41)

From the above results, the first-order term of the
FME F; is obtained:

1 2 3€—iny’/ 20rpsIN2TpwRrF)\ i
! 2'\/6TR j' ! 2efi’wkm ( 4(1)%2F - w%nz ) “

i#] =-2
3p—iny’
byl
Z T y—
2“/_‘[13 i#  n=-2 26

P
4a>RF RN

wRin cos(ZTpa)RF)>
X bl
< 2./61 RZ !

i#]

; 3wgin el=trorin) _ 1\
% Cl/ —iny o Il/
5 ( are—a) | dowin )

n=-2
1 +2 3=V
by Y Cl
Za)RF sm(2rpa)Rp)>
X bjj
( bk — whn? 2J€ R; v

2 —inyi ;
+ ci 3¢ (wrincos(2Tpwgrr) 7
X E - YY

nn ,tpwpin 2 2.2
=, T 2etrer 4wpp— wyh
_ ! E :b E C” —iny"
ij
2\/6TR i# n==2

3wgin elmmrerin 1\
X + - 1
<2(4wiF—win2) 2wgin vy

. CJ( TpwRIN) __ 1 .
b; C’f RLl AR ) {
i e (S

i#f n=-2
_ 1 Zb Z Cl] —iny! &
2\/67:]2 i£j ljn*—z 460%%1;—60%712)
,myff
1
XUy + 1)+ ;bl,n; nzewm
% 2prcos(2tprF) 1”
4w§eF—w§gn2 2y
38—1‘)1;/‘7
bjj
2\/6 RZ I Z nzerpwkm

i#] n=-2
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me Sll’l(z‘l,'pa)RF) +
X
b — wrn? Iy

Zb’/ Z a_nC’f

z;é] n=-2

1 i
<2—2 >(21 I (- 1%2)+ Zb,,

l;ﬁ/

3 .
: )
X E a—n |:27:R 4wRFrRSIH(wRFTR):|rZZ

n=-2

Zby Z a_,CY

l;é] n=-2

[<< D))

30 i
Zb’f Z a- HCU|:2IR donrn sm(pr‘L'R)j|]}j,Y

l;é/ n=-2
Zbu > ]
l;ﬁ/ n=-2

) [4w;§er Sin(szF(tP - %R»}I;Y

Zb’/ Z a_nC’J

z;é/ n=-2
3 . TR i
x |:4U)RFTR Sln(szF(TP B 7))1|1YY
+2 . 3
bj; a_,CY cos(wrrT
FE 2 Gl eosonr

- cos(2pr(rp - R))](IZY +17,)

; 3
Zbl’ Z - Cj |:2‘ER 4(,()RF‘L'R

l;é/ n=-2

X {sin(a)RFrR) —sin (ZwRF(TP + g)) ”Izz

3
Zb” Z 7"CU [2TR + dwrrtr

i —
X [sin(w;FrR) - sin(2wRF(TP + T—ZR)) }]IZX

Zb,, Z 4Gl Iy

z;éj n=-2
Zby Z anCl - —leos(@rrTe)
l#f n==2

- cos(2wRF<tp + 7))](13152 + I%X)

ZbU Z Cz/ —iny¥ (._—1>e_ianrR(1_(TP/TR))
19&/ n=-2 INTRWR
ETh 3 e
n

z;é/ n=-2

x (ZI)I{X -1, - )

x ( -1 )e—[”wRTR((1/2)+(TP/TR)) (21)5?)( _ I%Z _ ]gy)

INTROR
et B nC(5-27) (ke )
’?é] n=—
Z U Z Ce™™" [11 b, — LI,
l?f] Ry==
+3I4(Ii)j(z+lgx)] Zbll Z 0 CZ

z;ﬁ/ n=-2

X {[i—i— 3 (sin(2wgptR)

2‘L'R 4'CRC()R1:

+sinQwrp(tp — R)y }

Z by Z a_,C¥

1;61 n=-—2

X H:i—i— 3 (sin(2wgrtR)

27:R 4tRwRF

) . Tp i
+sinwrr(tp — RS, — _L,j;I)]/Y}

va Z a— "C”{ (COS(2CORFTR)
l#} n=-2
—cosQore(tp — TR))] (13/‘(2 n ng) } 42)

Two important findings of this result should be
recognized. First, when tp = 0, the above first-order
expression F) of the FME is reduced to the following
build-up DQ coherence expression:

=y Y by Z a_nC’f( )(zzgy 1)

1#]
o 3 c( ) (21— 1, — 1)
z;ﬁj n=-2
1 1
b Cl] —iny!
Z 2 ()
x (e—me‘L'R _ e—i(n/Z)erR)(ZI)U('X _ I%Z _ ];j’Y)
(43)

The last double summation in the above F} expression
is shown to be equal to zero (see the appendix).
Therefore, the above first-order expression F; is
reduced to the following form:

Fi = Zbyzan <>( bv—I)-

zyé/ n=-2
(44)

This is what one would expect in the case of §-function
RF pulses corresponding to 7p = 0 [14,15]. Second, the
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result indicates that the contribution of finite pulse
widths to the system evolution becomes less important
for large values of tz. In practice, the timing of the
BABA pulse sequence is known from broadband high-
resolution multiple-quantum NMR spectroscopy to be
essential for full synchronization in rotating dipolar
solids [15]. This is important for generating a pure
double-quantum Hamiltonian or for producing the
maximum strength of the DQ Hamiltonian.

The expression of F) that describes not only the
build-up but also the destruction of DQ coherence can
also be obtained as

OIS

l;éj n=-2

3 wkin N el _ | Ji
x . '
4relinTd) 4w3{ = w%(n2 4rin vy

e h Y e

l#j n=-2

» __3 ©Rin i n T 1Y 1y
4 4a)%F—a)%en2 Yy 27in xx

Zb,, Z a C”(— - @)(21

l;ﬁ/ n=-2
Lyn Y
I;é/ n=-2

i )

x Iy — Qj } Zb,,Za Ci

z;ﬁ] n=-2

|5+ i@(smc;) o(x(1+3)))]

i ﬂ ——
T - } Zb'] Z Cle™ (1n27r>

1;&/ n=-—2
% [efin2n(lf(ﬂ/2)) _ 671}12n[(1/2)+(ﬂ/2)]]<2Iij _ I;j,Y>

Zb,, Z a c'f(——@)(zl;;x—]

z#j n=-—2

2va Z Che™™" <m_2n>

i#] n=-2
% [e—m2rr(l—(@/2)) _ e—in271((1/2)+(@/2))]

4 T4\ g ) [

ij —in 1
ZZb” Z Cre™”" <1n271>

i#] n=-2

% [ o—in2(1=(8/2)) _ e—in27r((1/2)+(®/2))]

39 NT..
X [Esmn<l —6>]1){X
ij —1
ij —iny
3 Zb” Z Che <m2n>

17&] n=-—2

« [ o—in2r(1=1/2) _ ,~in2n((1 /2)+(Q)/2))] |:—_@} Igy

2
ey (5-9)

i#j n=-2

X Q—i—% sin 2—7T + sin 1—g 17
4" an 7 N Tw)) |

22%20 C”( )21%, (45)

i#f n=-2
with
b

WRFTp = 5 R (46)
wR = 2—71 47

TR

2

g=2"" (48)

TR

Considering only the expressions with double-quantum
terms, F; is reduced to the following terms:

Zbu Z a-C} (_ - ﬂ) (Iyy = Iy,

z;ﬁ/ n=-2
(49)

which corresponds to the above result (Equation (44))
for ¥ = 0.

Next, the first order of Equation (24) can be
computed as follows:

ArD) = AL(0) + /0 Giode—F, (26)

with
G\(v) = H(). @7)
AUT) = A1(0) =0, (50)

! !
Ay = / Yl + f Hyy(1)0y()d?
0 ‘o ’ ‘o
+/ Hﬁ(z’)dr’+/ HY()dt
0 0

! t _
+ / Hyy(£)0x(£)dd + / HY()dr —tF,.  (51)
0 0
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After integration of each term, we obtain

Al([)— Zbl] Z CI/ —inyV

z;é] n=-2

2eMor (4wh . — win?)

|:3(2prsin(leRp) — wgin cos(ZIwRF)):|
X I77

Zbl] Z Cz/ —inyV

l;é/ n=-2

" e~ MRt 1+ 3inwpg I
2wgin 2(4wyp — win?) 2

Zbl} Z CI/ —iny!

17£/ n=-2

|:—3(2wRFSin(21pr) — wgin cos(2ta)Rp)):|
X Iyy

2eintor (4a)2 F— a)%enz)

ey e

17£j n=-2

5 e~ morl | n 3inwg 7
2wgin 2(4wpy — win?) "

i inort _ |
sz/ Z Cl] —iny [TRM]IXX

17£j n=-2
ij —3a)RF
oS e
2 2.2
[75/ =, 4w RN

x (IZY+IYZ)+ Zblj Z CII —inyV
1#/ n=-2
« 3(2(1)RFCOS(ZZO)RF)+wRinSin(2leF))
D eintor (46()2 e — w%{HZ)

X (IZY+1YZ)+ Zb,, Z a_,C’

1#/ n=-2
x 121, —17, —10) +3 7 Zb,, Z a_,Cl
z;éj n=-2

t 1 .
X |:(2 — %(3 Sln(za)RFl)> IZZ

t 1 .
+| =+ (3 sm(ZwRFz) Tyy—tlyy
2 4CL)R17

3, |
— sin“(wrrt) —t \(Uzy +1yz) | +——=
<2wRF (wrrt) )( 7y Y7)i| W

X Zb’f Z a_nC”|:( +—(3 sm(ZwRFt))IZZ

i# o on==2
t 1 .
+ |z —+—@sinQwgrt) | Ixx
2 4a)RF

3.
+<2a) sin’(wgpt) — l) (Ixz+Izx) — ZIYY]
4= Zblj Z C// —my’/(e—iant _ I)HK/X
l;ﬁ/ n=-2
ZZb,j Z a c;f{zH’;X Zb,, Z Clg=m"

i#j n=-2 1#] n=-2

3(20)RF sin(2twRF) — wgRin COS(Zla)RF))
X ‘ Iyy
2eMor (4wk . — whn?)

e

1#/ n=-2

8 e~ inwr! 1+ 3inwg 7
Dwgin 2(4wkp — win?) o

Z bjj Z Ci{e_my”

1#/ n=-2

—3(2(1)RF sin(2ta)RF) — wRgin COS(2[CL)RF))
x . I7z
2eMor (4w . — win?)

Zmzcww

l;/:j n=-2
e~ morl _ ] 3inwg
X —+ 1
[ 2wpin 2(4wgy— a)ﬁgnz)i| “

J —inw, r_l
Zbu Z Cre™ |: a);in ]IYY

z;ﬁj n=-2
—ini 3wrr
th/ _Z C] v |:4w 2 2 (IXZ+IZX)
17£j n=-2
e ce
17£/ n=-2
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. I I
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. P
1;&/ n=-2

t
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sm(wRFt)]

(52)



Downloaded by [Harvard College] at 07:41 08 November 2012

Molecular Physics 11

These series of overwhelming equations (Equations
(42), (45), and (52)) give an insight into the complexity
of the dynamics of the spin systems during the pulse
sequence.

Considering the expression with only double-
quantum terms, we obtain the following form:

Al(l) = Zb,] Z a_ CZI(ZIYY_IXX —Izz)

l;ﬁj n=-2
—_ bi/ a_nCijt(ZIXX — Iyy — Izz)
2\/612;&]: nZ—:Z !
3
— b,/ a_ Cut<— — @)(IYY — IXX)
2\/_; nZZ

(53)

which is reduced to the expression

A =57 Zbl/Za c%( +@>(Iyy—IXX).

l;éj n=-2
(54)

Note that the above expression is proportional to t.
The function A;(7) depends on both the evolution time
t and the parameter ¢. In previous studies of the BABA
pulse sequence with §-pulse sequences, the expres-
sion of the function A;(¢) with only double-quantum
terms was found to be proportional to e "@r' gas
follows [14]:

Al([):4j/_zb’/|: "2(05'] Bie 21;/U( i) >( Diwpt 1)]

i#]

XU;‘?X"'I%_ngz)"' Zblj
laéj

L . 1 .
x [—Cg(a”,ﬂ”)e‘z"’ (—2i )(e-z‘w'*’ - 1)}
WR

< (Iy+ 1}y =215, + Z bjj
z;ﬁ]

P i 1 .
X I:—Cl‘ll(ay, ﬂl‘/)e_ly <la)R)(€ IRl _ 1)

4O (o pe” () e — 1y
-1 ’ iwR

400
Ut =2 = 3 e )
m=—0o0
[~ g
1;&/ n=-2
(55a)

This tells us that the BABA pulse sequences with finite
pulses produce fewer double-quantum terms than the
BABA pulse sequences with §-pulse sequences.

3. Numerical analysis of BABA

For m =1, consider a system of two spins. Only DQ
terms are considered for the function A;(r). We
consider the simple case as in Ref. [14] where the
rotation is of = B/ =y7= 0. The coefficients C¥
are C; = —(1/4/3)sin(@) cos(@)e?, C_; =0, C,=
(1/2+/6)(sin’(@)e2"), C_, =0. For example, with
0=mn/4 and ¢ =0, the -coefficients are C; =
—(1/24/3) and C, = (1/44/6). The function Aj(7) is
written as

4
A1) = j@b”[a 1C1<IR_; rp)lﬁ

+a_,C (TR —; 4Tp> w] (Iyy —Ixx),  (55b)

where
t
Y=—, (55¢)
TR
2
¢=""" (18)
TR
a, = ie—in(l+¢)[e—iﬂ(l—2¢) -1, (55d)
27mi
and
a,= __l'e—i2n(1+¢)[e—i2n(l—2¢) _ 1] (556)
4ri

After substitution of Equations (55¢), (55d) and (55¢)
into (55b), we obtain

Ai(Y9) 3 (

1
bUTR 26 Ma_2)
X (;—'—(f))l/f(]yy —IX)(). (SSf)

We consider the case 0.1 <@ < 0.606, which corre-
sponds to the spinning frequencies wg/2m =
5—10kHz and to the recoupling RF fields
wgrp/2m =25 —-50kHz. We generated two types of
plots from Equation (55f). First, the plot of A(¢)/b;tr
versus v = t/tg, while keeping ¢ = 2tp/tx constant,
corresponding to Figure 3. Then the plot of A(#)/b;tr
versus ¢ = 2tp/tg, While keeping the time ¢ constant,
corresponding to Figure 4.
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Figure 3. Numerical functions of the finite pulse BABA sequence with A(7)/b;Tr versus ¥ = t/tg.
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Figure 4. Numerical functions of the finite pulse BABA sequence with A;(¢)/b; versus ¢ = 2tp/tg.

3.1. Analysis of the figures

Figure 3(a) shows the dimensionless function
A1(t)/bjTtr for the BABA pulse sequence with finite
pulse widths versus the dimensionless number
Y = t/tg, for ¢ = 0.1. Figure 3(b) shows the plot of
the same function A(¢)/b;tr versus ¢ = t/tg, for the
two cases ¢ = 0.1 and ¢ = 0.606. Due to the complex-
ity of the function A;(¢)/b;tr, the real, imaginary, and
absolute parts are plotted separately as a function of .

In Figure 3(b), the symbols ‘square’, ‘plus’, and
‘hexagram’ represent respectively the real, imaginary,
and absolute parts of the function A(¢)/bjtr for
¢ = 0.606. These functions depend on the DQ terms.
Therefore, study of the amplitude of the DQ terms can
be considered as a viable approach for controlling the
complex spin dynamics of a spin system evolving under
the dipolar interaction of a BABA pulse sequence with
finite widths. The plot can be considered as a
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quantitative representation of the amplitude of the DQ
coherence as a function of . The size of A;(¢)/b;tr
determines the amplitude of the DQ coherence, which
indicates the degree of efficiency of the scheme. A
closer look at Figure 3 (BABA with finite pulse widths)
compared with Figure 4 (BABA with delta-pulse
sequences) [14] shows that the magnitude of the DQ
terms of BABA with finite pulses is small compared
with the magnitude of BABA with § — pulsesequences,

Aq(2) Ai(2)
<
b[]"L'R b,'j'L’R

b
finitepulse §—pulse

as expected.

Figure 4(a) shows the plot of the function A(f)/b;
for the BABA pulse sequence with finite pulse widths
versus the dimensionless number ¢ = 21p/tz, for
= Ims. Figure 4(b) shows the plot of the same function
A1(2)/bj; versus ¢ = 2tp /g, for the two cases 1 = 1 ms
and ¢t = 2ms. As for Figure 3, due to the complexity of
the function A(¢)/by;, the real, imaginary, and absolute
parts are plotted separately as a function of ¢. In
Figure 4(b), the symbols ‘square’, ‘plus’, and ‘hexa-
gram’ represent respectively the real, imaginary, and
absolute parts of the function A;(¢)/V for t = 2ms.
These functions depend on the DQ terms. It can easily
be seen that, when ¢ = 2tp/tg increases, the magnitude
of the double-quantum terms decreases, as expected.
When ¢ — 0, the magnitude of the DQ term —
maximum corresponding to the delta-pulse sequence.
However, when ¢ = 0.5 corresponding to tp = t2/4,
we have A(¢)/b; = 0. The strength of the DQ terms
decreases, cancels and then builds up again. This
dynamic predicts that a full decoupling is possible,
which occurs at ¢ = 0.5.

4. Discussion of the results obtained

The FME approach is essentially distinguished from
AHT by its function A;(¢), which provides an easy and
alternative way for evaluating the spin behavior in
between the stroboscopic observation points. The
approach provides the option of evaluating the spin
evolution between the time points of detection.
However, AHT and FT result respectively in average
and effective Hamiltonians that are expanded in a set of
terms of increasing order. These Hamiltonians are in
general associated with stroboscopic detection
schemes.The FME approach has the advantage of
overcoming the limitations of stroboscopic detection
schemes. We have limited our investigation to the first-
order F; of the effective Hamiltonian. This order is
identical to its counterparts in AHT and FT. However,
the A (7) function is associated with the appearance of

features such as spinning sidebands in MAS. The
evaluation of A(¢) is useful in this study, especially for
measuring the level of productivity of double-quantum
terms between §-pulse sequences and sequences when
finite widths are taken into consideration. The FME
provides a quick means to calculate higher-order terms,
allowing the disentanglement of the stroboscopic
observation and effective Hamiltonian that will be
useful to describe spin dynamics in solid-state NMR.
Note that the FME scheme is not restricted to dipolar
or quadrupolar interactions, and can be applied to any
case. The FME approach is unique due to its expression
for A(7). Here, we did not consider the importance of
the boundary conditions (origin of time), which provide
a natural choice of A(0) for simplifying the calculation
of higher-order terms that we neglected. From
Equations (54) and (55), it can be seen that the BABA
with é-pulse sequences produces more DQ terms than
the BABA with finite pulse width.

The plot of the magnitude of the double-quantum
term of A(7) as a function of the pulse length gives a
basic understanding of the experiment such as how to
select robust finite pulse widths, and how to select
finite pulse widths that maximize or minimize double-
quantum terms. The study of this function could be
helpful in predicting the conditions of decoupling such
as that shown in the particular case described in
Section 3.

5. Conclusion

This article calculates the first-order term of the
Floquet-Magnus expansion approach for a spin
system evolving under dipolar interaction and subject
to BABA with finite pulse width. The first-order term
F is identical to the first-order average Hamiltonian.
This F; term in the BABA scheme with finite pulse
sequence is similar to the result obtained with the
BABA scheme when considering the delta-function RF
pulse, i.e. T, = 0. The obtained Equation (44) for Fj is
valid for multispin systems with dipolar interactions
and can also be extended to quadrupolar interactions.
Equations (54) and (55) are very significant results in
this article. Using the FME scheme, we describe
theoretically the fact that the BABA sequence perfor-
mance is related to double-quantum excitation. This
result basically means that this pulse sequence allows a
scaling factor for the dipolar interaction that depends
on how long the finite pulses are. In the future, the
impact of the resulting formula with respect to
experimental data of the spin dynamics will be
checked. Also, the perturbations due to simultaneously
excited zero quantum coherences will be considered,
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essentially to provide suggestions for optimum setup
conditions. With the quite advanced micro-coil tech-
nology, the possibility of setting a limit on applicable
pulse lengths to provide practical relevance for the
obtained equations deserves further attention. This
analysis is the subject of a forthcoming paper. Another
interesting treatment that is amenable to results similar
to those obtained here consists of using the free
mathematica script developed by Brinkmann and
Levitt [36-39].
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Appendix A:
Al

Tp )
/ e~ MR (3 cos?(wgpt) — 1)dt
0
. 3(2a)RFsin(21'prp)) — 3(a)Rin COS(2TPC()RF))
B 2eTrorin) (4ak . — whn?)
(1 — el—Trerinyy 3wgin

2wgin 24wk, — whn?)’

(A1)
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/ el (3 sin(wppt) — 1)dr
0

_ 3(2a)RF Sil’l(27.’pa)R1:)) — 3wRin COS(2'EPCURF)
= 2€(IP(URM)(4“)%€F _ w%"nZ)

(1 — el=mronin)) Swgin (A2)
2wpin 24wk — okn?)’
Tp ) 1 — (—tpwpin)
/ einant gy = L =€), (A3)
0 wRin
TP .
/ e "Rl cos(wprpt)sin(wgrpt)dt
0
_ WRF
bk — win?
_ 2(1)RF COS(20)RFTP) + a)Rin Sil’l(szFTp) (A4)

inwRt, 2 252
2eMerr (4eg p — wRN?)
TR

3 1
f (3sinX(wgrt) — Ndt = L~ [3(sin(wrrtz)
TTR_TP 2 4a)RF

+sinQwgptp — WrFTR))], (AS)

R

2 1
[ (3 cos*(wprt) — 1)dt = LI [3(sin(wrrTr)
%—rp 2 4pr
+sin(Qwrrtp — WRFTR))],
(A6)
% |
f cos(wgpt) sin(wgpt)dt = — [cos(wgrrTR)
Ry 4orF

— cos(2wrrtp — WRFTR)],
(A7)

12R+Tp 1
[ Gsin’oren) — 1)di = 2+ [3(sin(wrrte)
R 2 4(URF

— sin(Za)Rprp + wRFTR))]»

(A8)

Ritp

, |

[ (Beos(@rrt) — 1)di = & — —[3(sin(wrsTe)
R 2 4a)RF

2

—sinwgrrtp + WrrTRr))],
(A9)

[cos(wrFTr)
RF

r§+rp 1
’ cos(wgrt) sin(wgpt)dt =
73 4w

—cosLwrrtp + WrFTR)],
(A10)

TR 1
/ (3 sin*(wgpt) — 1)dt = L [3(sinQQewgrtr)
TR—Tp 2 4wRF

+sinQwgrrtp — 20RFTR))]
(A11)

TR 1
/ (3 cos*(wgpt) — 1)dt = L [3(sinQwgrrTr)
T dwrr

R—TP 2
+sin2orrtp — 20rrTR))],
(A12)
TR 1
/ cos(wgrt) sin(wgpt)dt = — [cosRQwrFTRr)
TR—Tp 4(1)RF

— COS(2(1)RF‘EP — 2pr1:R)].

(A13)
A2
Using the relation
WRTR = 27, (A14)
we have
1 b S ij ,—iny" ! —inwrTR —i(n/2)wrTr
_m; ,-,-n:z;z Cle <m>(€ —e )

1 N TaRY .
- _ E bi; E Clem™m [ —)-(1—-e""")=S. (A15
e O <i2ﬂ) \n( 6__,) (A1
S,

i# =2
Next
cy =0, (A16)
S =2, (A17)
S_1=-2, (A18)
S, =0, (A19)
S, =0, (A20)
lead to
S=0. (A21)





