Seminar: High-Resolution MR Elastography of the Human Hippocampus

Curtis L. Johnson, PhD, is an Assistant Professor in the Department of Biomedical Engineering and the Department of Psychological and Brain Sciences at the University of Delaware. He received his PhD in Mechanical Engineering in 2013 from the University of Illinois at Urbana-Champaign where he worked to develop techniques for magnetic resonance elastography (MRE). His research is in high-resolution MRE for assessing the structure, function, and health of the human brain for applications in neurology, neurosurgery, and neuroscience. He is a Junior Fellow of the International Society for Magnetic Resonance in Medicine (ISMRM) and serves as the Secretary of the ISMRM MR Elastography Study Group.

Magnetic resonance elastography (MRE) is an emerging technique for noninvasively characterizing the quantitative mechanical properties of tissues in vivo. These mechanical properties are highly sensitive to the structural integrity of tissue, and MRE has shown promise in diagnosing and staging diseases of many organs, including liver, breast, heart, and brain.

However, the ability to accurately characterize specific neuroanatomical structures has been limited by poor spatial resolution and the need for high signal-to-noise ratio in reasonable scan times. Specialized approaches to obtaining high-resolution brain MRE data are needed to improve the sensitivity and specificity of mechanical property measures.

In this talk Dr. Curtis Johnson discussed the work of his group in (1) high-resolution MRE techniques to target the hippocampus and (2) applications of hippocampal MRE in characterizing neurological conditions and the structural contributions to memory performance.

Dr. Curtis Johnson discussing his work using magnetic resonance elastography to characterize the mechanical properties of tissue