Validation of a Standardized Normalization Template for Statistical Parametric Mapping Analysis of 123I-FP-CIT Images

Aurélie Kas1,2, Pierre Payoux3, Marie-Odile Habert3,4, Zoulikha Malek2, Yann Cointepas5, Georges El Fakhri6, Philippe Chaumet-Riffaud7, Emmanuel Itti8, and Philippe Remy1,9

1URA CNRS-CEA 2210, Service Hospitalier Frédéric Joliot, Orsay, France; 2Service de Médecine Nucléaire, CHU Pitié-Salpêtrière, AP-HP, Paris, France; 3Service de Médecine Nucléaire, CHU Purpan et INSERM U825, Toulouse, France; 4Université Pierre et Marie Curie-Paris 6, INSERM U678, Paris, France; 5UNAF-CEA, Service Hospitalier Frédéric Joliot, Orsay, France; 6Nuclear Medicine Division, Radiology Department, Harvard Medical School and Brigham and Women’s Hospital Boston, Massachusetts; 7Service de Médecine Nucléaire, CHU de Bicêtre, AP-HP et Faculté de Médecine Paris 11, Le Kremlin Bicêtre, France; 8Service de Médecine Nucléaire, CHU Henri Mondor, AP-HP et Faculté de Médecine Paris 12, Créteil, France; and 9Département de Neurosciences, CHU Henri Mondor, AP-HP et Faculté de Médecine Paris 12, Créteil, France

123I-FP-CIT (123I-β-carbomethoxy-3-β-(4-iodophenyl)nortropane) is a SPECT dopamine transporter (DAT) tracer that probes dopaminergic cell loss in Parkinson’s disease (PD). Quantification of 123I-FP-CIT images is performed at equilibrium using a ratio (BR) of specific (striatal) to nonspecific (occipital) uptake with values obtained from regions of interest drawn manually over these structures. Statistical parametric mapping (SPM) is a fully automated voxel-based statistical approach that has great potential in the context of DAT imaging. However, the accuracy of the spatial normalization provided by SPM has not been validated for 123I-FP-CIT images. Our first aim was to create an 123I-FP-CIT template that does not require the acquisition of patient-specific MRI and to validate the spatial normalization procedure. Next, we hypothesized that this customized template could be used by different SPECT centers without affecting the outcomes of imaging analyses. Methods: The spatial normalization to the customized template created with SPM (template A1) was validated using 123I-FP-CIT images obtained from 6 subjects with essential tremor (ET) with normal DAT status and 6 PD patients. Variability in BR values due to the normalization was evaluated using striatal volume of interest (VOI). To determine whether different SPECT centers could use a unique 123I-FP-CIT template, we generated 3 other 123I-FP-CIT templates using different subjects and image-processing schemes. The interchangeability of these templates was assessed using (a) putamen BR values analyzed with the intraclass correlation coefficient (ICC) and the Bland–Altman graphical analysis, and (b) SPM analysis comparing the results of group comparisons—that is, ET versus PD, obtained after normalization to each of the 4 templates. Results: There was no significant difference between pre- and postnormalization striatal BR values in our study. The mean variability calculated with putamen VOI values after normalization to each template was <10%, with the lowest ICC of 98%. Intergroup analyses performed with VOI and SPM approaches provided similar results independently of the template used. Conclusion: SPM normalization was accurate even in subjects with low striatal 123I-FP-CIT uptake, making it a promising approach for automatic analysis of 123I-FP-CIT images using a single customized template at different centers.

Key Words: dopamine transporters; SPECT; statistical parametric mapping; normalization; Parkinson’s disease

DOI: 10.2967/jnumed.106.038646

Parkinson’s disease (PD) is characterized by the progressive degeneration of nigrostriatal dopaminergic neurons. This neurodegenerative process is associated with a loss of striatal dopamine transporters (DATs) as shown by postmortem studies (1,2). Therefore, in vivo measurement of DAT density with PET or SPECT is an early marker of the dopaminergic cell loss in subjects with parkinsonian symptoms or in asymptomatic carriers of genetic mutations causing PD (3–7). In clinical routine, DAT SPECT images are often analyzed visually. However, quantitative analysis is useful to differentiate subjects with subtle localized or diffuse loss of DATs that can be difficult to sort out by visual inspection alone. Moreover, quantification is mandatory to measure disease progression (7–11) and to assess the efficacy of neuroprotective drugs (12,13).

DAT availability can be estimated using a ratio between specific (striatal) to nonspecific (e.g., occipital) activity (14,15) measured using regions of interest (ROIs) drawn manually over these structures in individual images. However, manual ROI delineation is operator-dependent and may be affected by the variability in head positioning and severe signal loss that occurs in the posterior putamen of PD patients. Therefore, manual drawing of ROIs is associated...
Representative Results:

FIGURE 1. Templates: (Top) Regional CBF template (A) available in SPM software package; 11C-raclopride template (B) created in Orsay PET Center from images of healthy subjects; reference template of 123I-FP-CIT (C) created in center A (Template A1). Raclopride template has high specific striatal and low cortical uptake similar to the profile of 123I-FP-CIT images. (Bottom) Three other templates of 123I-FP-CIT (D = template A2, E = template B, and F = template C) constructed with images obtained from different g-cameras or data-processing schemes.
FIGURE 5. SPM t maps (P_{uncorrected} < 0.001) obtained by comparing ET patients with PD patients (6 PD < 6 ET) after normalization to each template. Four statistical maps reveal similar significant differences between the 2 groups for 4 different templates. R = right; L = left.